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For an anisotropic topographic feature in a large-scale flow, the orientation of the 
topography with respect to the flow will affect the vorticity production that results 
from the topography-flow interaction. This in turn affects the amount of form drag 
that the ambient flow experiences. Numerical simulations and perturbation theory 
are used to explore these effects of change in topographic orientation. The flow is 
modelled as a quasi-geostrophic homogeneous fluid on an f-plane. The topography is 
taken to be a hill of limited extent, with an elliptical cross-section in the horizontal. 
It is shown that, as a result of a basic asymmetry of the quasi-geostrophic flow, the 
strength of the form drag depends not only on the magnitude of the angle that the 
topographic axis makes with the oncoming stream, but also on the sign of this angle. 
For sufficiently low topography, it is found that a positive angle of attack leads to 
a stronger form drag than that for the corresponding negative angle. For strong 
topography, this relation is reversed, with the negative angle then resulting in the 
stronger form drag. 

1. Introduction 
Large-scale flow over topography in a rotating environment has been subject 

to very intense investigation owing to the many possible applications in both the 
atmosphere and the oceans. Numerous studies of flow-topography interaction have 
been performed with analytical, numerical and laboratory methods. For purposes 
of analysis and intuitive understanding, many of these studies have focused on 
models using isolated, circularly symmetric hills. Excellent historical reviews of that 
work can be found in Huppert & Bryan (1976), Johnson (1978), Bannon (1980), 
and Verron & Le Provost (1985). For such simplified models, the question of 
orientation of the topography with respect to the flow does not arise. However, those 
models point out a basic asymmetry of the flow-over-topography problem, in that 
vortex tube compression always produces an anticyclone above the topography that 
advects the fluid around the hill in the anticyclonic direction. We will see below 
that for asymmetric topographies this basic asymmetry of the flow interacts with the 
asymmetry of the topography in a way that produces a dependence on the orientation 
of the topography of vorticity production and of form drag. 

Of course, there are already many notable works that examine flow-topography 
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interactions with a model of topography more complicated than the circularly sym- 
metric hill. Merkine & Kalnay-Rivas (1976) consider an elliptical topography with 
two orientations, cross-stream and along stream. Pierrehumbert & Malguzzi (1984) 
consider a dipolar topographic forcing (but with a single orientation). Cook & Held 
(1992) have investigated flow over an elliptical topography, with a single orientation, 
in a general circulation model. We should also note that there have been many 
excellent studies of flow over elongated topography in the form of ridges. In most 
cases, however, the ridge is of infinite extent and oriented perpendicular to the flow. 
An exception is the study by Boyer (1971) who considers flow over a ridge of infinite 
extent at an angle to the large-scale flow. This list of examples does not even begin to 
mention all of the studies with irregular or random topography or those with actual 
representations of features on the Earth's surface. On the whole, however, there have 
not been any systematic studies of the effects of orientation of anisotropic topography 
of finite extent. 

As a first step toward a better understanding of the importance of topographic 
orientation, we have investigated the dependence of form drag and local vorticity 
distribution over topography on the angle of orientation. Our study revealed the 
following interesting effect. For an elongated isolated hill, the size of the form drag 
depends not only on the size of the angle that the hill's horizontal axis makes with 
the oncoming flow, but also on the sign of that angle. For sufficiently low topography, 
it is found that a positive angle of attack leads to a stronger form drag than that for 
the corresponding negative angle. Furthermore, for strong topography, this relation is 
reversed, with the negative angle then resulting in the stronger form drag. We describe 
and attempt to explain these results in terms of the fundamental symmetries of the 
problem and the positions of the relative vortices that are induced by the topography. 

For flow in a rotating environment, the simplest model that captures the essential 
effects of vortex tube compression and stretching is the quasi-geostrophic model. 
Within the context of that model, in 92, we set up the basic equations for the 
problem of determining how the local flow around the topography depends on the 
orientation of that topography with respect to the large-scale flow. In 93, we give the 
results of simulations that show how the vorticity distribution over the topography 
depends on the orientation of that topography in the current. In 94, we examine the 
dependence of the form drag on the topographic orientation, and relate the results 
to the vorticity distributions described previously in 93. We develop the perturbation 
theory for the case of weak topography, and compare the predictions to results from 
the simulations. Furthermore, we present a simple point-vortex model that helps to 
explain the transition from the behaviour of the form drag as a function of the angle 
of attack, as observed in the weak topographic regime, to the very different behaviour 
observed in the strong topographic regime. 

2. Themodel 
The variation of the flow with topographic orientation is captured, in simplest 

form, by the quasi-geostrophic model for a single homogeneous layer under a rigid 
lid. The first requirement for the validity of this model is that the rotation rate 
of the environment is sufficiently high so as to dominate local advective processes. 
Furthermore, we assume that the layer thickness variation is a small fraction of the 
mean depth. 

Let h be the scaled topography given by h = fAH/Ho. Here f is the Coriolis 
parameter, which is twice the rotation rate, Q, -Ho is the average depth, and AH is 
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the height of the bottom above the mean bottom level. Then the quasi-geostrophic 
evolution equation is given by 

84 
- + ~ ( y  - UY, q )  = -r[ + VV*[. 
at 

Here [ = V2y, q = + h is the potential vorticity, U is a constant uniform eastward 
flow imposed by the boundary conditions, ty is the flow resulting from the presence of 
the topography, and J is the Jacobian defined in the usual way. In quasi-geostrophic 
theory the flow is in geostrophic balance; thus, up to an additive constant, the pressure 
variation associated with the presence of the topography is simply proportional to the 
streamfunction: p = fpty, where p is the density of the fluid. This is the simplest model 
which captures the effect of vortex tube stretching due to passage over topographic 
features. Besides the advection, we have also included two viscous effects: a bottom 
drag due to Ekman pumping, and a horizontal diffusion of relative vorticity. For a 
systematic derivation of the quasi-geostrophic evolution equation see Pedlosky (1987). 

We need to define a model of a confined asymmetric topography. The studies of 
Verron & Le Provost (1985) were performed with a Gaussian-shaped topography, 
which we extend here to the elongated form: 

h(x, y )  = hOe-(XR/a2+J”2/b2) (2.2) 

where the coordinates x’ and y’ are just the old coordinates x and y rotated by the 
angle of attack of the topography with respect to the oncoming stream, as defined in 
figure 1. Specifically 

x’ = xcosa-ysina, (2.3) 
y’ = xsina + ycosa, (2.4) 

where 2a and 2b are the lengths of the major and minor axes of the ellipse made by 
the contour of topography at the level with h(x,y) = e-’. It will be convenient to 
designate specific terms for the two ends of the ellipse representing the topography. 
Accordingly, the upstream end of the ellipse will be referred to as the nose of the 
topography, and the downstream end as the tail. Also we will refer to the line of 
points on the surface of the topography along the major axis as the crest of the 
topography. 

In what follows, we non-dimensionalize all lengths by the length of the major 
axis, L = 2a, all velocities by the magnitude of the imposed large-scale velocity, 
IUI, and time by the advective time scale, T = L/lUl. Thus the non-dimensional 
topography ho, in terms of the dimensional variables, is given by h&/IUI. A small 
value of the non-dimensional ho implies a relatively shallow topography or a relatively 
strong flow. In the circularly symmetric case, where a = b, our choice of scales for 
non-dimensionalization and our topography are the same as in Verron & Le Provost 
(1985). 

The basic phenomenon in impulsively started flow over a hill is that, by conservation 
of potential vorticity, fluid pushed up onto the hill acquires negative vorticity, and 
the fluid that was pushed off the hill acquires positive vorticity. The negative vorticity 
over the hill remains over the topography, while the positive vorticity is to a greater 
or lesser degree shed downstream depending on the strength of the flow and the 
viscosity. For the circularly symmetric hill, and weak viscosity, Verron & Le Provost 
(1985) identified two distinct flow regimes separated by the critical value lq, = 11. 
When the topography is ‘weak,’ that is, when the flow is strong, most of the positive 
vortex is shed downstream and the stationary flow is close to the inviscid solution 



332 G. F. Carnevale, R. Purini, P. Orlandi and P. Cavazza 

FIGURE 1. Schematic defining the angle of topographic orientation with respect to the flow. 
The scaled topographic height, defined in the text, is given by h ( x , y )  = hexp(-x”/a2 - ~ ’ ~ / b ~ ) ,  
in coordinates x’ and y’ that are aligned with the topographic principal axes in a horizontal 
cross-section. The lengths of the major and minor axes of the contour of topography at level 
h(x ,y )  = e-l are 2a and 2b. The angle of attack, c(, is defined as the angle (counterclockwise) from 
the major axis, pointing into the flow, to the negative direction of the large-scale flow. A positive 
angle of attack, a = 45”, is illustrated here. 

given by = -h. For ‘strong’ topography, trapping of the positive vortex can occur, 
at least temporarily, forming a dipole, which is unstable in the purely inviscid case. 
In either the strong or weak topography case, if viscous effects are small, most of the 
cyclone is eventually shed downstream (cf. Huppert & Bryan 1976); but, even then, if 
there is any viscosity acting on the flow, there will be a remnant of positive vorticity 
in the stationary flow near the topography. This point will be discussed further below. 

In our simulations, we have fixed the length of the semi-minor axis at b = 0.1 
giving a topography which is far from circular but yet not in the realm of long 
thin bodies. The boundary condition of uniform flow at infinity presents some 
difficulties in deciding on the appropriate numerical simulation scheme. We have 
actually performed our simulations with three different codes with different boundary 
conditions to check that the effects discussed here are independent of the exact 
specifications of the boundaries. One of these codes was a finite difference code with 
a channel geometry with Orlanski (1976) radiation conditions in the downstream 
direction. The other two codes were spectral. One was run with doubly periodic 
boundary conditions and the other had an artificial spatial filter which destroyed 
vorticity far from the centre of the topography. All the results reported below 
were found for all three different codes and thus appear, at least qualitatively, to 
be independent of the details of the boundary conditions. This was also checked by 
doubling the domain size and the filter radius while keeping the resolutions fixed. Thus 
the phenomena reported below appear local, limited to the region where the confined 
topography is centred. Also, questions of sensitivity to computational resolution were 
tested by running all simulations both at resolutions 64 x 64 and 128 x 128, with 
additional key tests at resolution 256 x 256. 

Finally, we must specify the values of the viscous coefficients in the evolution 
equation (2.1). When considering stationary flow, the inviscid solution is somewhat 
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uninteresting from the point of view of form drag because, as a manifestation of 
D’Alembert’s paradox, there turns out to be no drag at all in that case, as has been 
pointed out in Bannon (1980) and elsewhere. In other words, if the perturbation flow 
is stationary and confined (so that there is no possibility of transferring energy into 
the flow or to infinity), then there can be no energy input for there is no energy sink 
(see Batchelor 1967). Thus we have to decide on what non-zero values to give to the 
viscous coefficients r and v .  To limit our search of parameter space, we have decided 
to set v = 0.01 and r = 0.2, taking these values from the parameter range explored 
by Verron & Le Provost (1985). In test cases we have varied these values by over an 
order of magnitude in each direction in order to verify that the phenomena reported 
are not qualitatively sensitive to these values. In particular, cases with r = 0 were 
checked, since there the trailing cyclone vortex is particularly reduced in strength but 
is, nevertheless, still present. 

3. Structure of the vorticity field 
Before proceeding to the question of the form drag, we first illustrate how the flow 

field over the topography changes with topographic orientation. We will consider 
only the stationary flow over the elliptical hill forced by the large-scale flow. The 
results were obtained by simulating impulsively started flow. That is, the flow is 
initially eastward with speed 1 everywhere. The large-scale component of the flow is 
maintained at that value thereafter. Initially there is no perturbation field, and since 
there is no vorticity associated with the large-scale flow, there is initially no vorticity 
anywhere in the flow. As zero-vorticity fluid is advected onto the topography, it 
must develop negative relative vorticity to compensate for the positive topographic 
contribution to the conserved potential vorticity, q = [ + h. Similarly, fluid advected 
off the hill must develop positive vorticity. Thus the earliest stage of evolution involves 
the creation of negative vorticity on the upstream side of the hill and positive vorticity 
on the downstream side. The later stages of evolution and, in particular, the final 
stationary flow depend on the strength of the topography. Here we shall take two 
extreme cases, ho = 1 and ho = 100, to illustrate the results for ‘weak’ and ‘strong’ 
topography. As we shall demonstrate, the value ho = 1 is well within the regime of 
linear perturbation theory. The larger value ho = 100 is chosen to be well beyond 
the transition to nonlinear effects and also to be well above the minimum strength 
needed for Taylor column formation. 

3.1. Weak topography 
The stationary patterns of relative vorticity for the case ho = 1 for four different 
angles of attack are shown in figure 2. For all of these cases, the local or perturbation 
flow due to the presence of the topography is weak in the sense that the lines of 
flow or the contours of total streamfunction (not shown) are all nearly parallel to 
the large-scale flow direction. However, the problem can be analysed in terms of the 
patterns of relative vorticity. First consider the anticyclone fixed above the hill. Its 
strength is less than that achieved in the inviscid solution, [ = -h. The anticyclone 
is also not perfectly elliptical. Instead, it is relatively larger in magnitude on the 
upstream side than on the downstream side. The negative vorticity peak is strongest 
at a = 90” (coming up to 95% of the value of the topography maximum) and weakest 
for a = 0”, and vice uersa for the positive vorticity. For all angles of attack, there is a 
peak of positive relative vorticity downstream of the negative vorticity peak. 

To help understand these results, consider the fluid element which comes from 
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upstream, crosses the peak of the topography, and then moves downstream. A fluid 
element approaching from upstream has zero relative vorticity, and, for each 'step' 
that it takes going uphill, it acquires exactly enough negative vorticity to balance 
the positive topographic contribution in the conservation of the potential vorticity. 
Thus for inviscid flow the stationary potential vorticity is exactly zero everywhere 
with relative vorticity being exactly anticorrelated with the topography, c = -h. 
With viscosity, however, the relative vorticity generated on the fluid element by 
the topographic effect also dissipates continuously. Thus, when this fluid element 
reaches its highest point on the topography, its relative vorticity will be weaker in 
strength than it would have been inviscidly. Then, as it descends the hill, the positive 
vorticity generated by the conservation of potential vorticity more than cancels the 
relative vorticity remaining from its climb with the destructive effects of viscosity 
acting. Thus, net positive relative vorticity must result on the descent. Of course, the 
positive relative vorticity on the fluid element will continue to diminish as it moves 
downstream. Of all the cases shown in figure 2, the ascent to the top of the hill by 
the fluid element is shortest for a = 90". In that case, there is little time for viscosity 
to act during the ascent and descent. Hence, the anticyclone peak will be strong, and 
the cyclone weak. In contrast, in the case with a = 0", the excursion to the top is the 
longest, and hence the effect of viscous decay on the vorticity is the greatest, and the 
anticyclone will be relatively weak, while the cyclone will be relatively strong. 

3.2. Strong topography 
The structure of the vorticity field in the strong topography case, ho = 100, contrasts 
greatly with that in the weak case. The final stationary configurations for the relative 
vorticity field in this case, for the same four angles of attack shown for the weak 
topography case, are shown in figure 3. The negative vortex is no longer nearly 
elliptical. For all the attack angles, the negative vortex is more concentrated at one 
end of the topography, and the positive vortex is now no longer simply trailing on 
the x-axis. Even though the negative vortex is now, at most, only 30% of the peak 
amplitude of the topography, the topography is so strong that the nonlinear term 
J(y ,  5) competes with the large-scale advection. The negative vortex here is intense 
enough to strongly displace the trailing positive vortex from the positive x-axis. In 
varying a from large negative angles to positive angles, we see the peak of the cyclone 
displaced from the nose of the topography on the trailing side of the topography, to 
the tail end on the leading side. For the same variation of a, we see the peak of the 
anticyclone displaced from the tail to the nose of the topography. 

4. Form drag in the stationary flow 
Topographic form drag is the net force exerted on the flow by the topography 

along the direction of the large-scale flow. In terms of the streamfunction, which in 
quasi-geostrophic theory is proportional to the pressure field, the drag, up to a factor 
of the mean fluid mass per unit area, is given by 

(cf. Bannon 1985; Carnevale & Frederiksen 1987). Thus, we see that an enhanced 
pressure gradient on one side of the topography relative to the other yields a net 
force on the topography. 

Considering the drag in the case of stationary flow, we first check that the drag in 
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FIGURE 2. Contour plots of the stationary relative vorticity field for the weak topography case, 
= 1, for various angles of attack. Panels (a-d) represent the stationary vorticity field for flow over 

the elliptical topography for the angles of attack tl = -90", -30", 0" and +30° respectively. The 
thick curves correspond to positive vorticity levels spaced 0.05 units apart, while the thin curves 
correspond to negative vorticity levels spaced 0.1 units apart. The zero vorticity level is not drawn. 
Only the central region of size 3 x 3, of the full computational domain of 5 x 5, is shown. 

the inviscid case is zero as discussed above. The solution to the inviscid problem is 
given by q = 0, that is, V2y = -h. Substitute -V2y for h directly in the expression 
for D and integrate by parts. All that remains after the integration is a boundary 
term at infinity that vanishes. Next, we turn to numerical results for the stationary 
states with viscosity. As in the case where we considered the structure of the vorticity 
field, we will see that the behaviour of the drag is rather different in the weak and 
strong topography limits. 

4.1. Weak topography 
In figure 4(a), we show the drag as a function of the attack angle for the case 
ho = 1. The results were obtained from a series of simulations in which the angle 
of attack was varied from -90" to +90" in 5" increments. Since the form drag is 
always negative, opposing the large-scale flow, we plot its magnitude. The form drag 
is greatest when the long axis of the topography is perpendicular (i.e. a = +90") 
rather than parallel (a = 0") to the flow. The graph of the drag is not symmetric 
about a = 0". It appears that the form drag is stronger for a positive angle of attack 
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FIGURE 3. Contour plots of the relative vorticity field for the strong topography case, = 100. 
Panels (u-d) represent the stationary vorticity field for flow over the elliptical topography for the 
angles of attack tl = -go", -30", 0" and +30° respectively. The thick/thin curves correspond to 
positive/negative vorticity levels spaced 2.0 units apart. The zero vorticity level is not drawn. Only 
the central region of size 3 x 3, of the full computational domain of 5 x 5, is shown. 

than for a negative angle of the same magnitude. In figure 4(b), we plot the relative 
variation of that difference, that is, we plot (ID(cc)l- ~D(-ct)~) /~D(cc)~,  where D ( E )  is the 
form drag for a given angle of attack. The figure shows that the difference is greatest 
when the size of the attack angle is about 20", with a 2% variation at that angle. For 
somewhat higher topographies (ho = 20), the relative variation reaches about 20%, 
as we shall see below. 

For the weak topography case, form drag dependence on attack angle can be 
predicted from perturbation theory. To examine the effects of weak topography, we 
begin by rewriting the stationary form of equation (2.1) as 

ah 
(4.2) 

ac U- + r( - vV2( = -U- - J(y , (  + h). ax  ax  
Note that since we are dealing with the non-dimensionalized equations, U is actually 
just the sign of the dimensional large-scale flow. We assume the primary balance for 
weak topography is between the terms on the left, which are linear in the vorticity, 
and the first forcing term on the right, -UBh/ax. This permits us to treat the 
quadratically nonlinear Jacobian term as a small perturbation. It also means that at 
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F~GURE 4. Form drag from weak topography perturbation theory for h~ = 1 .  These calculations 
were made for doubly periodic boundary conditions. (a) The solid curve is the absolute value of 
the stationary form drag from the fully nonlinear simulation. The dashed curve is the prediction 
of the lowest-order perturbation theory (see equation (4.5) for D(*)). (b )  The open circles mark the 
results for the relative variation of the difference between the drag at positive and negative angles 
of attack for the fully nonlinear simulations. The values given are lOo(D(a) - D(-a))/D(cr). The 
solid curve shows the prediction for this same quantity of the perturbation theory truncated at next 
to lowest order, that is, with D = D(2) + D(3).  

lowest order the streamfunction is linear in the topography, and all succeeding terms 
are of higher integral order. Thus we write 

5 = p + p + c ( 3 )  + . . . , (4.3) 

where rcn) = O(h:). 
The form drag can also be calculated order by order. Directly from the formula 

(4.1) and the fact that the streamfunction at lowest order is linear in the topography, 
we see that the form drag is quadratic in the topography at lowest order. Thus the 
perturbation series for the form drag will be 

D = + + D(4) + . . . . (4-4) 

Using the Fourier transform in space, we can readily obtain the lowest-order 
contribution to the drag (see the Appendix for details): 

where k is the Fourier wavevector and dk = r + vk2. 
It is difficult to apply this perturbation theory, meant for the infinite domain, 

directly to the simulations with the channel and radiation boundary conditions or 
the spatially filtered simulation. However, for simulations with periodic boundary 
conditions, the result is simply a discretization of the continuous formulas. Although 
the quantitative values are somewhat different from the case with the spatial filter, 
qualitatively they are the same. In figure 4(a), we compare the actual result for the 
dependence on a for the full nonlinear doubly periodic calculation with the lowest- 
order result. We see that the linear theory, D(2), shown as a dashed curve, does account 
for most of the form drag with ho = 1 .  We will show that the small difference is due to 
the first nonlinear term D(3),  but let us first note that the lowest-order form drag, D(2),  
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is symmetric in the attack angle. In fact, this will be the case for any topography with 
a reflection symmetry. To begin with, we show the dependence on the attack angle 
explicitly. We can define the attack angle either with reference to the angle between 
the line of symmetry or perpendicular to it. Then we can write h(x, y ;  a )  = 4(x’, y’), 
where x’ and y’ are just the rotated coordinates defined previously in equations (2.3) 
and (2.4). A reflection symmetry corresponds to the fact that either 4(x, y )  = +(-x, y) 
or 4(x ,y )  = $(x , -y ) .  We shall write the Fourier transform of h ( x , y ; a )  as fik(a). By 
using the fact that rotations do not change area, this Fourier transform is found to 
be 

where $(k,,k,) is the Fourier transform of 4(x,y), and 

hk(a) = $(kk,kb)7 (4.6) 

k: = k, cos a + k, sin a, 

kb = -k, sin a + k, cos a. 

(4.7) 

(4.8) 
By direct substitution in equation (4.5), we have 

(4.10) = -u / k;dk[$(k, cos a + k, sin a, -k, sin a + k, cos .)I2 d2k 
k2( U2kz + d;)  (27c)2 * 

Thus, 

(4.11) 
o(2)(-a) = -u J k x  2d k @(kX cos a - k, sin a, k, sin a + k, cos a)I2 d2k 

k2( U2ki + d i )  (27c)2 * 

If 4(x, y) = 4(-x, y), which implies $(-k,, k,) = $(k,, k,), then the substitution 
k, + -k, shows that D(2)(-a) = D(2)(a). If +(x, y )  = +(x, -y), then the same point is 
demonstrated by the change of variables k, + -k,. 

These results show that the asymmetry in the form drag, as seen in figure 4, must 
come from higher-order terms in the perturbation theory. We shall next demonstrate 
that for ho = 1 the second term in the perturbation series captures the observed 
deviation from symmetry very well. That term, D(3),  is derived in general form in the 
Appendix. If the topography has the point reflection symmetry h(x, y) = h(-x, -y), 
as is the case for the elliptical topography, then the expression for simplifies, and 
we have 

where 

and 

(4.12) 

(4.13) 

(4.14) 

as shown in the Appendix. 
If, in addition to the symmetry of reflection in a point, the topography is also 

symmetric to reflection through a line, then we can show that D(3)(a) = -D(3)(-a). 
For example, if the topography is symmetric about the y’-axis, then hk,ky((Co = 
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$(kL, kb) = $(-kL, kb) = h-k,~,(-a). Thus, a change of variables in which all kx ,px ,  qx 
change sign (note that 2 * p x q changes sign), in the expression for D(3)(-a), shows 
that the integrand is simply the negative of that in the expression for D(3)(a). Similarly 
if hk,p,(a) = hk,,-k,(-a), then a change of variables in which all k y , p y ,  qy change sign, 
in the expression for D(3)(-a), shows again that the integrand is simply the negative 
of that in the expression for D(3)(a). By rotation, this result can be further extended 
to the case for topography with reflection symmetry in any horizontal line. For 
the periodic boundary condition case, it is again an easy matter to calculate the 
theoretical drag by discretizing the Fourier representation. In figure 4(b), we show the 
relative difference between the form drag for positive and negative angles of attack 
(open circles) calculated from the fully nonlinear simulations with periodic boundary 
condition. These values are compared to the predictions (solid curve) from the 
perturbation theory truncated at the D(3)(a) contribution. For this weak topography 
case, the match is almost perfect. 

4.2. Strong topography 
As we increase the amplitude, b, of the topography, the perturbation theory can be 
expected to fail. In two series of experiments, in which the angle of attack was fixed at 
+30" respectively, the topography amplitude was varied from 1 to 150. The absolute 
values of the stationary form drag for these experiments are plotted in figure 5(a). 
The solid/dashed curve corresponds to the experiments with attack angle +/ - 30". 
Firstly, we note that for the range of topography roughly from ho = 1 to ho = 15, 
the form drag for both curves is approximately a quadratic function of ho. This is 
what one would expect in a weak topography regime where D(2), the lowest-order 
approximation to the form drag, would dominate. Also note that, in this region, the 
strength of the form drag for the positive angle is stronger than that for the negative 
angle. Near b = 15 there is a transition to a new regime where the scaling with 
topography no longer follows the quadratic law. In the strong topography regime, the 
drag seems to increase with topography amplitude roughly as ht3 .  Also in the strong 
topography regime, the relation between the form drag for positive and negative 
angles has reversed, with negative angles of attack corresponding to stronger form 
drag than positive angles. This last point is emphasized in figure 5(b), where the 
relative difference in form drag strength between the plus and minus 30" cases is 
plotted as a function of topographic strength. 

As an example of the functional dependence of the form drag on angle for a case 
of strong topography, we plot this relation for the case of ho = 100 in figure 6(a) 
(solid curve). There have been several papers which discuss in part the theory of 
strong topographic forcing (cf. Pierrehumbert & Malguzzi 1984); nevertheless, we 
have not been able to predict the shape of this form drag curve. We note that this 
curve is somewhat broader about a = 0" than the corresponding curve for ho = 1 
in figure 4(a). As an aid to judging the symmetry and smoothness of the curve, we 
have also plotted the symmetric dashed curve corresponding to A sin2 a + B cos2 a, 
where A and B were chosen so that the two curves would have the same extremal 
values. In figure 6(b), we plot the relative difference in strengths between positive and 
negative angles of attack. The shape of the curve is similar to that shown in figure 
4(b) except, of course, for the sign since in this regime the negative angles correspond 
to stronger form drag. Here we see that the maximum difference is about -18% at 
around attack angle (a( = 20". This is a great deal stronger than the ho = 1 case, but 
similar in magnitude to the ho = 15 case(see figure 5b), which is still in the regime 
where the positive attack angle leads to the stronger form drag. 
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FIGURE 5.  Form drag as a function of topographic height. (a) Two series of experiments are 
represented, with the angle of attack, a, fixed in each series at +30" and -30" respectively. The 
solid/dashed curve shows the absolute value of the stationary form drag from the experiments with 
a = +/ - 30". Note that at h = 15 there is a cross-over from the regime in which the positive angle 
of attack gives a stronger form drag to the regime with just the reverse relationship. (b)  The relative 
difference in form drag strength between the plus and minus 30" cases is plotted as a function of 
topographic strength (the dashed line is simply the zero level). 
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FIGURE 6. Form drag for the strong topography case, ho = 100. These data are taken from 
simulations using the code with spatial filter. (a) The absolute value of the stationary form drag is 
plotted as a function of attack angle (solid curve). This is compared to the fit to the symmetric curve 
A sin2(a) +B cos2(a) (dashed curve) with A and B chosen to give a good fit at the extremal values of 
the data. ( b )  The relative variation of the difference between the drag at positive and negative angles 
of attack is plotted versus attack angle. Specifically the graph represents lOO(D(a) - D(-a))/D(a),  
where D(a) is the form drag for a given angle of attack, a. 

The cross-over from the weak to the strong topography regime seems, from figures 
5(a) and 5(b), to occur roughly near ho = 15. As we noted above in $3, when ho = 1 
the total streamfunction is only slightly perturbed from that for uniform flow, but 
for topographies with amplitudes such as ho = 100, a Taylor column, i.e. a region of 
recirculating closed streamlines, exists. It is tempting to try to associate the transition 
of the form drag behaviour from the weak to the strong limits with the occurrence 
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of the Taylor column. However, the formation of Taylor columns occurs in these 
simulations for topographic amplitudes above roughly ho = 50, depending somewhat 
on the angle of attack, and not at ho = 15. Of course, in the regime from ho = 15 to 
ho = 50, the streamlines are strongly distorted from the unperturbed case of uniform 
flow even though closed contours do not form. The behaviour of the form drag as a 
function of topographic height, as well as its dependence on attack angle, are better 
understood in terms of the structure of the stationary vorticity field, as we will now 
consider further. 

4.3. Efects of the structure of the vorticityfield 
An examination of the distribution of relative vorticity over the topography, as 
discussed in 93, can provide us with some physical insight into the behaviour of the 
form drag. First we consider why, in the weak topography case, the drag is stronger 
for the positive angle of attack than for the negative angle of the same magnitude. 
In the perturbation theory, we noted that the lowest-order form drag does not have 
this asymmetry, and it is necessary to go to the next order to capture this effect. This 
higher-order effect results from the nonlinear advection produced by the Jacobian, 
J(v,C). Physically this is related to the tendency of the negative vorticity over the 
topography to displace the positive vortex in an arc in the clockwise direction about 
the centre of the topography. In the a = -30" case, in figure 2(b), the negative vortex 
is displaced away from the crest of the topography and away from the region of 
negative vorticity. This results in a weaker induced pressure gradient compared to 
what it would have been without this angular displacement. In the a = +30" case, 
in figure 2(d),  the negative vortex is displaced toward the crest of the topography 
and toward the region of negative vorticity. Thus the form drag is stronger for the 
positive-a case than for the negative-a case. 

Given the above analysis for the weak topography case, how can we understand 
the transition to what we have called the strong topography regime in which the 
form drag is stronger for the negative angle of attack than for the positive angle? As 
noted above, this effect is not directly related to the formation of Taylor columns. 
Instead, the answer will be found in the relative positions of the vortices with respect 
to each other and to the topography. Figure 7 displays data gathered from a series of 
experiments representing topographies with amplitudes from ho = 1 to ho = 40, and 
to angles of attack a = +30". The positions of the peak of positive relative vorticity 
(triangles) and negative relative vorticity (dots) are shown over ellipses which represent 
the topography. For ho = 1, the positive peak vorticity is located slightly below the 
x-axis, directly downstream of the centre of the topography. As ho increases, the 
displacement of the positive vorticity peak is rather different for the two topographic 
orientations. For the a = -30" case, the peak of positive vorticity simply moves 
further toward the nose of the topography but always remains on the downstream 
side. For the a = +30° case, the positive vorticity peak is displaced in an arc. Between 
ho = 10 and ho = 15, this peak crosses over the crest of the topography, moving from 
the downstream to the upstream side. From ho = 15 to ho = 40, the peak is displaced 
more and more toward the nose of the ellipse, remaining always on the upstream side. 
This shows that the relevant effect is that for ho = 15 the positive vortex peak crosses 
over from the trailing side of the topography to the leading side in the a =  +30" case, 
while no such transition occurs in the a = -30" case. 

We have found that a simple point-vortex model based on the idea that it is mainly 
the position of the positive vortex that determines whether we are in the strong or 
weak topographic regime can capture the transition between these regimes. Consider 
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F~GURE 7. Positions of vorticity extrema for different values of the topographic height, ha. The flow 
is in the positive x-direction, and the orientation of the topography is indicated by the ellipses, with 
LY = +30" in (a) and LY = -30" in (b) .  The positions of the positive (negative) vorticity peaks are 
indicated by the solid triangles (circles). The topographic heights represented are /Q = 1, 5, 10, 15, 
20, 25, 30, and 40. In each panel, for ho = 1, the negative vortex is located approximately over the 
centre of the ellipse, and the positive peak is just slightly below the x-axis, directly downstream of 
the centre of the ellipse. 

replacing the actual positive and negative vortices by two point vortices, one of each 
sign. Note that if the negative vortex was exactly at the centre of the topography, 
then, by symmetry, it can have no contribution to the form drag. For topographic 
strengths less than ho w 15, the negative vortex is only displaced by a relatively small 
amount from the centre of the topography; hence, as a first approximation, we neglect 
its contribution to the form drag and consider only the contribution coming from the 
positive vortex. Let us further assume that the only effect of increasing the strength of 
the topography is to change the angular position (6 measured from the x-axis) of the 
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positive vortex. Accordingly, in the model, the positive vortex is taken to be a fixed 
distance ro from the centre of the topography. Thus, we evaluate the contribution 
to the form drag from a point vortex placed in the position (rocos0,rosin0) as a 
function of 8. The streamfunction for a point vortex of strength r at this position is 
given by 

(4.15) y = - ln(lr - rol). 
r 
2n 

The resulting form drag is 

(4.16) 

Performing the integration numerically, and varying only the angle 0, we obtain the 
plots shown in figure 8. The solid graph is the drag, normalized by rho, for the 
topographic orientation a = +3W, and the dashed graph is for a = -30". Keeping 
in mind that for this model the magnitude of the angle 0 is correlated with the 
height of the topography, we note that for small 0 the drag is stronger (i.e. more 
negative) for positive a than for negative a, and vice versa for large 101. Thus, this 
point-vortex model does capture the same behaviour, at least qualitatively, that we 
observed in the simulations. Here we have used ro = 0.4 in the calculations of the 
drag. The angle 0 at which the model passes from the weak to the strong regime is 
about 0 = -3W, which corresponds to placing the point vortex right over the crest of 
the topography. However, the cross-over point does depend somewhat on the value 
chosen for ro. Furthermore, note that as the angle 0 becomes very large, a point will 
be reached at which the point vortex contributes positively to the form drag, as may 
be intuitively obvious. But, of course, the total drag must be negative, so it is clear 
that for very large displacements, 0, the contribut.ion of the negative vortex cannot 
be neglected. To properly capture all aspects of the dependence of form drag on 
topographic orientation and height would require a far more elaborate model than 
our one-point model. Nevertheless, this model does capture the essential feature of 
the form drag's asymmetric dependence on the sign of a in the weak and strong 
topography regimes. 

5. Conclusion 
We have explored how the drag that an elongated hill exerts on a flow, in a rotating 

fluid, depends on the orientation of that hill with respect to the flow direction. As 
might be expected intuitively, the drag is strongest when the hill's long axis is 
perpendicular to the flow direction, and it is least when that axis is parallel to the 
flow. A somewhat less intuitive result is that the strength of the form drag, even for 
hills with a horizontal cross-section which is symmetric about its long axis, depends 
not only on the size of the 'angle of attack', but also on the sign of that angle. 
We related this asymmetric dependence on angle to an interaction between the basic 
asymmetry in the mechanism of vortex tube compression and the breaking of the 
circular symmetry of the topography. The advection of zero-relative-vorticity fluid up 
onto the topography always results in an anticyclone over the topography and this 
tends to shift the downstream cyclone in an anticyclonic direction, which puts the 
cyclone either closer to or further from the topography depending on the topographic 
shape and orientation. Whether a positive angle of orientation results in more or 
less drag than the corresponding negative angle depends on the height of the hill. 
We defined a weak and strong (i.e. low and high) topography regime. For weak 



FIGURE 6. Non-axisymmetric free jet emerging with oblique pressure distribution. ( a )  Problem 
geometry; ( b )  dimensionless density perturbation 6 p ( r ,  [) inside the jet; (c )  dimensionless perturba- 
tion 6 u ( r , ( )  of radial velocity at the jet boundary (top), inside the jet (middle) and on the jet axis 
(bottom). Dashed curves represent distortions of boundary and axis streamlines. 
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numerical simulations were performed at the San Diego Super Computer Center. We 
are grateful for helpful discussions with William Young. 

Appendix. Perturbation theory for 'weak' topography 

amplitude, ho, is taken to be the small parameter. Thus we write 
This is a perturbation theory in which the non-dimensional scaled topographic 

y = y(1) + y(2) + y(3) + . . . , (A 1)  

where V2y(") = [("I = O(h;). 

transform in both x and y of (4.2) to obtain 
To evaluate the terms in the perturbation series, we first take the continuous Fourier 

gkl[k = - k U h k  - J k ( y ,  [ -k h). (A 2) 

Recall that in the non-dimensional variables, U is just the sign of the non-dimensional 
large-scale flow. We carry it along even when raised to an even power simply for 
book-keeping convenience. 

The linear Green function gk is given by 

where dk = r + vk2 and Jk(A,B) is the Fourier transform of the Jacobian of fields A 
and B .  An explicit formula for Jk(A,B) in terms of the Fourier transforms of A and 
B is given below. 

The first- and second-order solutions can then be written as 

[t' = -ik, Ugkhk, 

[F' = -gkJk(y(l), 5'') + h). 

(A 4) 

(A 5 )  

and 

Using the Fourier transform within the formula for the form drag, we have 

Then by direct substitution of (A 4) into (A 6), we obtain 

(A 8) 
= -u 1 k;(-ikxU + dk)lhkI2 d2k 

k2( U2k: + d i )  ( 2 7 ~ ) ~  * 

Notice that the last expression is decomposed into a real and imaginary part. But 
the form drag is a real quantity. The vanishing of the imaginary part of the integral 
can be checked by considering the change of sign k + -k for the dummy integration 
variables. Since the topography is real we have the Hermiticity constraint, hi = h-k, 
and so lhkI2 is unaltered by this sign change. Thus we see that the imaginary part of 
the integrand changes sign under this sign reversal and so must vanish on integration 
over the range from -a to +a for kx and k,. Finally we have the result in the text, 
(4.5). 
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The next-order term D(3) is given by 

and since 

cf' = -gkJk(l#(l), [(l) + h), (A 5 )  
this is the lowest-order term to involve vortex-vortex interaction. The Fourier trans- 
form of the Jacobian can be represented as 

where 2 . p x q = (pxqy - pyqx) and 6(.) is the multidimensional Dirac delta function. 
Now we can calculate the D(3). Begin by changing the sign of the dummy integration 

variable, k, in (A9), and substituting for c(2) from (A 5 )  to obtain 

After introducing the expression for J k  and the definition (A3) for the linear Green 
function, we obtain 

where 

and 

(4.14) 

(4.13) 

Expanding (A 11) further leads to an integrand containing several terms, but most 
of these can be shown to vanish by using the Hermiticity constraint h k  = h-k and 
the symmetry properties of gkpq. Note that since the Dirac delta function forces 
k + p + q = 0, it follows that k x p = -k x q = q x k,  and so g k p q  is symmetric 
under cyclic permutation of the wavevectors { k , p , q } ,  and it is antisymmetric under 
their painvise interchange. 
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After some cancellations and simplifications, the contribution D(3)  can be written 
= 11 + 1 2  + 13, where as a sum of three integrals: 

and 

If the topography has point reflection symmetry, that is if h(x, y )  = h(-x, -y) ,  
which implies that hk = h-k, as is the case for our elliptical topography, then both Il 
and 1 2  vanish. This leaves only 1 3 ,  which is the result given in (4.12). Note that since 
I 3  is antisymmetric with respect to the sign of U ,  and since D(2) is also antisymmetric, 
the only effect that changing the sign of U has on D = + D(3) is to change its 
sign. This is readily appreciated by considering the geometry of the problem of the 
ellipse and reversing the sign of U ,  to see that the two cases are identical subject 
to a rotation of 180". On the other hand, since the terms I1 and 1 2  are even in the 
sign of the large-scale flow, we realize that a lack of point reflection symmetry in the 
topography breaks the symmetry under large-scale flow reversal, and the magnitude 
of D will also change when the flow reverses. 
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